skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Weili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper proposes a deep-learning based generalized empirical flow model (EFM) that can provide a fast and accurate prediction of the glottal flow during normal phonation. The approach is based on the assumption that the vibration of the vocal folds can be represented by a universal kinematics equation (UKE), which is used to generate a glottal shape library. For each shape in the library, the ground truth values of the flow rate and pressure distribution are obtained from the high-fidelity Navier-Stokes (N-S) solution. A fully-connected deep neural network (DNN) is then trained to build the empirical mapping between the shapes and the flow rate and pressure distributions. The obtained DNN based EFM is coupled with a finite-element method (FEM) based solid dynamics solver for flow-structure-interaction (FSI) simulation of phonation. The EFM is evaluated by comparing to the N-S solutions in both static glottal shapes and FSI simulations. The results demonstrate a good prediction performance in accuracy and efficiency. 
    more » « less